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Abstract

A fast and accurate procedure has been researched and developed for the simultaneous determination of maltol and ethyl maltol,
based on their reaction with iron(III) in the presence of o-phenanthroline in sulfuric acid medium. This reaction was the basis for an
indirect kinetic spectrophotometric method, which followed the development of the pink ferroin product (kmax = 524 nm). The kinetic
data were collected in the 370–900 nm range over 0–30 s. The optimized method indicates that individual analytes followed Beer’s law in
the concentration range of 4.0–76.0 mg L�1 for both maltol and ethyl maltol. The LOD values of 1.6 mg L�1 for maltol and 1.4 mg L�1

for ethyl maltol agree well with those obtained by the alternative high performance liquid chromatography with ultraviolet detection
(HPLC-UV). Three chemometrics methods, principal component regression (PCR), partial least squares (PLS) and principal component
analysis–radial basis function–artificial neural networks (PC–RBF–ANN), were used to resolve the measured data with small kinetic dif-
ferences between the two analytes as reflected by the development of the pink ferroin product. All three performed satisfactorily in the
case of the synthetic verification samples, and in their application for the prediction of the analytes in several food products. The figures
of merit for the analytes based on the multivariate models agreed well with those from the alternative HPLC-UV method involving the
same samples.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Maltol (3-hydroxy-2-methyl-4-pyrone), a naturally
occurring substance, has been marketed as a food flavor
enhancing agent (Ellis, 1972). Its synthetic homologue,
ethyl maltol, which is approximately six times more effec-
tive than maltol (Rennhard, 1971), has been available since
1967. These compounds are often found as flavor enhanc-
ers in many foods such as coffee, soybeans, cereals, breads,
malt beverages, and chocolate milk (Heath, 1978; Hui,
1991; LeBlanc & Akers, 1989). Maltol is tasteless at the rec-
ommended application doses, rather it modifies or
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enhances the flavors of the foods and beverages to which
it is added. However, Gralla, Stebbins, Coleman, and Del-
ahunt (1969) has reported some concerns regarding the bio-
logical health and safety of ethyl maltol. Therefore, the
determination of these two substances in foods is clearly
important, and methods, which can analyze quantitatively
the two compounds simultaneously, would be of particular
advantage.

Some high performance liquid chromatography with
ultraviolet detection (HPLC-UV) and mass spectrometry
(MS) have been reported for the determination of either
maltol (Ferreira, Jarauta, Lopez, & Cacho, 2003) or ethyl
maltol (Liu, Wang, Yang, & Yin, 2006; Wang, Liu, Yang,
Tian, & Kou, 2006) in foods. However, the above noted
techniques employ expensive instruments and/or materials,
and high purity solvents. HPLC-UV methods require
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suitable compounds for internal standards, which add to
the cost and complexity of the analytical procedure. More-
over, reports on the simultaneous determination of the two
compounds in such samples are a few (Ni, Zhang, &
Kokot, 2005; Peng, Ma, & Di, 2005).

Recent publications, which described the differential
kinetic spectrophotometric methods coupled with chemo-
metrics data of interpretation, have demonstrated the
success of this approach for simultaneous analysis of
similar substances (Crouch, Coello, Maspoch, & Porcel,
2000; Ni, Huang, & Kokot, 2004; Ni & Wang, 2007).
In particular, these spectrophotometric methods can be
increasingly applied for the simultaneous determination
of two homologues in food and pharmaceutical samples
(Abbaspour & Mirzajani, 2006; Blanco, Coello, Iturri-
aga, Maspoch, & Porcel, 1999; Chamsaz, Safavi, &
Fadaee, 2007; Ni, Wang, & Kokot, 2007), because it is
difficult for them to be quantitatively analyzed by tradi-
tional spectrophotometry because of their overlapping
UV spectra. The principles and applications of the differ-
ential kinetic methods have been reviewed (Crouch, 1993;
Quencer & Crouch, 1993). Essentially, in these methods
similar analyte species react with a common reagent,
and differences in the reaction kinetics are used to distin-
guish the components without any physical separation.
Chemometrics techniques are used for the processing of
kinetic data. Such an approach does not require a
detailed kinetic model. This is a major advantage over
the conventional techniques for processing kinetic data,
because such techniques rely on an accurate kinetic
model of the chemical system to obtain the order of
reaction and rate constants.

In this work, a differential kinetic-spectrophotometric
method has been investigated for the simultaneous analy-
sis of the two analytes, maltol and ethyl maltol. The
method relies on the different kinetic responses of maltol
and ethyl maltol, which react with iron(III) in the pres-
ence of o-phenanthroline in the sulfuric acid medium. Cal-
ibration models were built from the kinetic data derived
from the analyte mixtures, and with the aid of multivari-
ate methods of analysis such as principal component
regression (PCR), partial least squares (PLS) and princi-
pal component analysis–radial basis function–artificial
neural networks (PC–RBF–ANN). These models were
verified, compared and applied for prediction of analytes
in real samples.

2. Methodology

2.1. Kinetic models

Consider two analytes, A and B, which react with a
common reagent, R, to give the absorbing products, PA

and PB, according to the following reactions:

AþR! PA ð1Þ
BþR! PB ð2Þ
Assume that the two reactions involved, follow first or
pseudo-first order kinetics with respect to the analyte.
Thus, the rate equations for A and B are

� dcA

dt
¼ kAcA ð3Þ

� dcB

dt
¼ kBcB ð4Þ

where cA and cB are the concentrations of analytes, A and
B, at time t, and kA and kB are the corresponding rate
constants.

Integration of Eqs. (3) and (4) yields

cA ¼ cA;0 expð�kAtÞ ð5Þ
cB ¼ cB;0 expð�kBtÞ ð6Þ

where cA,0 and cB,0 are the initial concentrations of ana-
lytes, A and B, respectively.

Given the stoichiometry between the analyte and prod-
uct, the concentrations of PA and PB at time, t, can be rep-
resented as follows:

cPA
¼ cA;0½1� expð�kAtÞ� ð7Þ

cPB
¼ cB;0½1� expð�kBtÞ� ð8Þ

where cPA
and cPB

represent the concentrations of PA and
PB at time, t, during the reaction process, respectively.

When the two analytes behave independently and the
spectral absorbances of their products, i.e., PA and PB,
are additive, the absorbance of a mixture of A and B
may be written as

A ¼ APA
þ APB

¼ ePA
bcPA

þ ePB
bcPB

¼ cA;0ePA
b½1� expð�kAtÞ� þ cB;0ePB

b½1� expð�kBtÞ�
¼ KAcA;0 þ KBcB;0 ð9Þ

where ePA
and ePB

are molar absorptivities of PA and PB,
respectively; KA and KB are coefficients of proportionality
for components, A and B, at time t, respectively, and b is
the cell length.

For m standard samples, the absorbance data of kinetic
systems being monitored at time, s, can be expressed in
matrix form as

Am�s ¼ Cm�2K2�s ð10Þ
According to this equation, it is possible to determine the
components (in this work – maltol and ethyl maltol) by a
suitable chemometrics method. Thus, in this study, the ki-
netic data were collected from experiments and then pro-
cessed by PCR, PLS and PC–RBF–ANN.

2.2. Chemometrics methods

2.2.1. Principal component regression (PCR) and partial

least squares (PLS)

Principal component regression (PCR) and partial least
squares (PLS) are two well-known full spectrum multivar-
iate calibration methods (Martens & Naes, 2001). These
factor analysis based methods can overcome signal over-
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lapping (Malinowski, 2002), and they have been discussed
extensively in the literature (David & Thomas, 1988; Gela-
di & Kowalski, 1986; Lorber, Wangen, & Kowalski, 1987;
Ni et al., 2007; Wentzell & Montono, 2003). With PCR, the
data decomposition is performed using only the X-matrix,
i.e., the signal information, while PLS employs the Y-
matrix, i.e., the concentration data, as well as the X.

2.2.2. Principal component analysis–radial basis function–

artificial neural network (PC–RBF–ANN)

Artificial neural network (ANN) is a model, which is
based on a simplified concept of the functioning of the
brain. The model involves a number of nodes, called pro-
cessing elements or neurons, which are interconnected in
a net-like structure (Rosenblatt, 1958). A network consists
of three node layers: an input, a hidden and an output
layer. The input nodes only distribute the input vectors
to the hidden layer, which contains a transfer function,
and the output layer. Such models are readily applied to
linear and non-linear problems (Bishop, 1995; Haykin,
1998).

In this work, the data matrix was initially submitted to
PCA for data pretreatment. Scores from the significant
new latent variables were then processed by RBF–ANN
in the hidden layer. This layer consisted of a number of
RBF neurons (nh) and bias (bk). Each neuron employed a
radial basis function as the non-linear transfer function
to operate on the scores data obtained by PCA. A common
RBF is the Gaussian function, oj(x), which is characterized
by the centre (cj) and the width (rj)

ojðxÞ ¼ exp½�ðjjxi � cjjj=rjÞ2� ð11Þ

In the iterative calculation, spread is the most important
parameter of RBF–ANN networks, and it controls the size
of the width (rj). The larger the spread, the flatter and
smoother will be the Gaussian function approximation. If
the spread is too large, then many neurons will be required
to fit a fast changing function; if the spread is too small,
then many neurons are needed to obtain a smooth func-
tion, and the network may not generalize well.

3. Experimental

3.1. Chemicals and reagents

All chemicals used were of analytical reagent grade,
and all solutions were prepared with doubly distilled
water. Stock solutions of maltol (1 g L�1) and ethyl mal-
tol (1 g L�1) were prepared from suitable weight aliquots,
and dissolved in water in a 100 mL volume flask; the
solution was then diluted to the mark with water and
mixed well. A sulfuric acid solution (1 mol L�1), an iro-
n(III) solution (0.04 mol L�1) and an o-phenanthroline
solution (0.02 mol L�1) were prepared by taking suitable
weight aliquots of the reagents and dissolving them in
water.
3.2. Instrumentation

Kinetic and spectral data were obtained from measure-
ments on an Agilient 8453 UV–visible spectrophotometer
with a 10 mm fused-silica cuvette. A Model ZC-10 thermo-
stat (Ningbo Tianheng Instruments Factory, China) was
used to maintain the reaction temperature at 16 �C. The
pH was measured with a Model SA-720 pH meter (Orion).
The sample solutions were subjected to a short sonication
(SK1200H, Kudos Ultrasonic Instrument Co. Ltd., Shang-
hai), and all solution volumes of less than 1 mL were deliv-
ered with micropipettes (Finnpipette, Labsystems, Finland).

HPLC measurements were carried out with an Agilent
1100 Series HPLC-DAD system including a vacuum degas-
ser, quaternary pump, autosampler, and an injector with a
100 lL loop. An Agilent ZORBAX Eclipse XDB-C18 col-
umn (4.6 mm � 250 mm, 5 lm) was used with an Agilent
Zorbax high pressure reliance cartridge guard-column
(C18, 12.5 mm � 4.6 mm, 5 lm), and a variable wavelength
UV–visible detector measuring at 274 nm. All chromato-
grams were run at room temperature using a 40:60 mixture
of 0.2% KH2PO4 � H3PO4 buffer solution and methanol.
Other experimental parameters were: flow rate,
1 mL min�1; retention times, 3.6 min for maltol and
4.6 min for ethyl maltol.

3.3. Data processing

Data processing was performed by a Pentium IV com-
puter. The PCR, PLS and PC–RBF–ANN algorithms were
written in MATLAB (Mathworks version 6.5) by the
authors. The spectrophotometric absorbance versus time
data were autoscaled prior to submission to the appropri-
ate algorithms. The optimum number of PCs for PCR,
PLS and PC–RBF–ANN models was determined with
the use of cross-validation procedure (leave-one-out
method). To minimize the prediction error, the sum of
squares (PRESS) between estimated and added concentra-
tions was computed

PRESS ¼
Xn

i¼1

cijðestimatedÞ � cijðaddedÞ
� �2 ð12Þ

where cij(estimated) and cij(added) are the estimated and added
analyte concentrations of jth component in ith mixtures in
the calibration set, respectively.

This is a well-known parameter, which can be used to
indicate how well the three chemometrics models fit the con-
centration data. One criterion for the selection of the opti-
mum number of factors is the number, which coincides
with the minimum PRESS value. However, the PRESS cal-
culation is based on a finite number of samples and, there-
fore, it is subject to error. Hence, such use of PRESS can
lead to overfitting. A better criterion involves the compari-
son of the minimum PRESS – factor number combination
with such other combinations calculated progressively. Such
comparisons are generally facilitated by the calculation of
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the well known F-ratios. Haaland and Thomas (1988) have
suggested that an F-ratio of 0.75 is a satisfactory minimum
threshold to select the number of significant factors, and this
criterion was applied in this work.

The performance of the calibration models was verified
with the analysis of a data matrix from synthetic binary
mixtures. The parameters chosen to evaluate the prediction
performance were: % recovery for individual compounds,
relative prediction error – % RPES for individual com-
pounds, and % RPET for all compounds, Eqs. (13)–(15)
(Otto & Wegscheider, 1985)

% Recovery ¼ 100�
Xn

i¼1

cijðestimatedÞ=cijðaddedÞ
� �

=n ð13Þ

% RPES ¼ 100�

Pn
i¼1

cijðestimatedÞ � cijðaddedÞ
� �2

Pn
i¼1

cijðestimatedÞ
� �2

2
664

3
775

0:5

ð14Þ

% RPET ¼ 100�

Pn
i¼1

Pm
j¼1

cijðestimatedÞ � cijðaddedÞ
� �2

Pn
i¼1

Pm
j¼1

cijðaddedÞ
� �2

2
6664

3
7775

0:5

ð15Þ

where cij(added) indicates the actual concentration of jth
component in ith mixtures in the verification data set,
cij(estimated) is its estimation by the calibration models, and
n is the number of samples.

3.4. General procedure

A volume of x (<0.4) mL of the analyte solution was
placed into a 1 cm cuvette, and 0.03 mL of 0.02 mol L�1

o-phenanthroline solution, together with 0.03 mL of
1 mol L�1 of sulfuric acid were then added, followed by
(2.34 � x) mL water to give a volume of 2.4 mL. The cell
was shaken, and allowed to stand for 2 min in the temper-
ature controlled holder of the spectrophotometer (16 �C)
Fig. 1. (A) UV–visible spectra of maltol (20.0 mg L�1) and ethyl maltol (20.0
(20.0 mg L�1) and ethyl maltol (20.0 mg L�1) at t = 30 s. Other experimental
2.4 � 10�4 mol L�1, cH2SO4

= 0.012 mol L�1.
before the absorbance was set to zero. The cell was
removed, and the final 0.1 mL of 0.04 mol L�1 of iron(III)
was rapidly added to give 2.5 mL. Kinetic curves were fol-
lowed simultaneously from 370 to 900 nm, every 1 nm, at
0.5 s intervals during 30 s.

3.5. Procedure for the determination of maltol and ethyl

maltol in food samples

Several commercial food samples were purchased from
the market in Nanchang city. A solid food sample
(�100 g), such as biscuit and jelly, was ground to a fine
powder. And a liquid food sample (�100 mL), such as bev-
erage and julep, was filtered. Subsequently, this powder
(75.0 g) or the filtrate (75 mL) with 150 mL of chloroform
was placed into a 250 mL Erlenmeyer flask (with a screw
cap), and then shaken for 2.5 h. A suitable aliquot of this
mixture was then transferred to a 10 mL centrifuge tube,
and centrifuged at 4000 rpm for 10 min. The clear portion
of the mixture in the tube was used for analysis. An appro-
priate amount of this sample and 5.0 mL of chloroform
were added to a 25 mL flask, then diluted to the mark with
water and mixed thoroughly. Such solution was used for
analysis by the general procedure described above (Section
3.4).

3.6. HPLC procedure

Twenty microlitres of each sample (solutions from Sec-
tion 3.5) were injected, and the concentrations were calcu-
lated on the basis of the peak area ratios.

4. Results and discussion

4.1. Spectra behaviour

Absorption spectra of maltol and ethyl maltol in aque-
ous solution (Fig. 1A) indicated that they overlapped
mg L�1) in aqueous solution. (B) UV–visible absorption spectra of maltol
conditions are: T=16 �C, ciron(III) = 1.6 � 10�3 mol L�1, co-phenanthroline =
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strongly, and had two common peaks at 213 and 273 nm.
This ruled out prediction by conventional spectral analysis,
and led to the kinetic studies and the application of multi-
variate calibrations.

4.2. Reaction kinetics

According to previous studies (Ghasemi, Seifi, Sharifi,
Ghorbani, & Amini, 2004; Ghasemi, Seraji, Noroozi, Has-
hemi, & Jabbari, 2004; Martinovic, Kukoc-Modun, &
Radic, 2007), maltol or ethyl maltol reduced iron(III) in
the presence of o-phenanthroline in the sulfuric acid med-
ium to give the pink ferroin (Fig. 2). Spectra of the col-
oured ferroin, obtained from reactions under the
experimental conditions described (Section 3.4), were mea-
sured in the range of 370–900 nm at a reaction time of 30 s
(Fig. 1B). These spectra included an absorption band at
524 nm, which corresponded to the reaction product, ferr-
oin. The absorbance versus time kinetics measured over
30 s together with the spectra (Fig. 1B), indicate that both
analytes yield the same reaction product, ferroin, but at a
different reaction rates. The rate constants for the reactions
involving maltol and ethyl maltol, which were estimated by
fitting the kinetic data, obtained from single component
samples, to the equation of A = a0 � a1exp(�kt) (Draper
& Smith, 1981), are 0.0471 and 0.0394, respectively.
(or ) + Fe3+ + 3              + H

Maltol (or ethyl maltol) o-phenanthroline 

O

O
OH

C2H5O

O
OH

CH3 N N

Fig. 2. Oxidation reaction of maltol or ethyl maltol by iron(III)

Fig. 3. Kinetic curves for maltol and ethyl maltol with different con
Clearly, there are only small differences between the reac-
tion rates of maltol and ethyl maltol. Thus, it is difficult
to use classical differential kinetic methods, such as the log-
arithmic extrapolation and the proportional equation, to
resolve the mixtures. Therefore, the application of PCR,
PLS and PC–RBF–ANN modeling was investigated.

4.3. Optimization of the reaction conditions and univariate

calibration

The effects of the concentrations of iron(III), o-phenan-
throline, sulfuric acid and temperature on the determina-
tion of maltol or ethyl maltol were optimized. The results
showed that the optimized experimental conditions were
1.6 � 10�3 mol L�1 for iron(III), 2.4 � 10�4 mol L�1 for
o-phenanthroline, 0.012 mol L�1 for sulfuric acid and
16 �C for temperature. Under these conditions, several cal-
ibration samples with different concentrations of maltol or
ethyl maltol were analyzed, and the absorbance response
was measured as a function of time at 524 nm for each food
flavor enhancing agent (Fig. 3). Parameters of the linear
models for these data showed that for both compounds,
there was a good linear correlation between the measured
absorbance (A) and concentration (c). The calibration
equations were A = 8.2 � 10�3c + 21.3 � 10�3 (n = 10,
r = 0.9998) for maltol, and A = 7.5 � 10�3c + 27.8 � 10�3
+ → Oxidation product + 

Ferroin (pink)

N N

N

N N

N

Fe

2+

in the presence of o-phenanthroline in sulfuric acid medium.

centrations (mg L�1). Experimental conditions are as in Fig. 1B.



Table 1
Comparison of verification results for synthetic samples by PCR, PLS and
PC–RBF–ANN calibration models

Chemometrics methods % RPES % RPET

Maltol Ethyl maltol

PCR (2)a 2.8 (103)c 6.6 (106) 5.1
PLS (2)a 2.8 (103) 6.6 (106) 5.1
PC–RBF–ANN (2, 3, 300)b 5.4 (106) 8.0 (109) 6.8

a Values in parentheses = number of factors used for PCR and PLS
models.

b Values in parentheses = number of factors, nodes in the hidden layer
and the spread coefficient (sc), respectively.

c Values in parentheses = mean recoveries (%).
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(n = 10, r = 0.9998) for ethyl maltol. The linear concentra-
tion range for both maltol and ethyl maltol was from 4.0 to
76.0 mg L�1. The limits of detection (LODs) values, calcu-
lated according to the Miller’s method (Miller, 1991), were
1.6 and 1.4 mg L�1 for maltol and ethyl maltol, respec-
tively. Both the linear ranges and the LODs compare well
with the figures of merit given by the HPLC methods,
which utilize a UV detector (Liu et al., 2006).

4.4. Multivariate calibrations and their verification with

synthetic mixtures

A calibration set of 11 samples and a verification set of 9
samples were prepared with the use of the three level
Table 2
Maltol and ethyl maltol in food samples – PCR, PLS, PC–RBF–ANN calibra

Samplesa Found (lg g�1)b Added (lg g�1)
Original sample Standard addition

Maltol Ethyl maltol Maltol Ethyl mal

PCR

1 20.1 ± 0.1 ND 5.0 10.0
2 14.7 ± 0.1 ND 10.0 5.0
3 NDd 19.7 ± 0.1 5.0 5.0
4 18.9 ± 0.1 ND 10.0 10.0

PLS

1 20.1 ± 0.1 ND 5.0 10.0
2 14.7 ± 0.1 ND 10.0 5.0
3 ND 19.7 ± 0.1 5.0 5.0
4 18.9 ± 0.2 ND 10.0 10.0

PC–RBF–ANN

1 19.7 ± 0.2 ND 5.0 10.0
2 13.6 ± 0.2 ND 10.0 5.0
3 ND 19.1 ± 0.1 5.0 5.0
4 18.4 ± 0.1 ND 10.0 10.0

HPLC

1 20.0 ± 0.2 ND 5.0 10.0
2 13.8 ± 0.1 ND 10.0 5.0
3 ND 19.5 ± 0.2 5.0 5.0
4 19.2 ± 0.1 ND 10.0 10.0

a Samples: (1) Biscuits – Yichang Huaer Food Production Co. Ltd.; (2) Jell
Hengxing Fruitjuice Drink Production Co. Ltd., and (4) Julep – Hubei Yidin

b Mean (replicates) ± standard deviation.
c % Recovery = 100 � [(cFound(std.) � cFound)/cAdded].
d ND = Not detected.
orthogonal design denoted by OA9(32). The levels corre-
sponded to values in the range of 4.0–64.0 mg L�1 for both
maltol and ethyl maltol. For the PCR, PLS and PC–RBF–
ANN calibration models, it was observed that there were
no significant differences in the PRESS values beyond
two factors according to the proposed method (Haaland
& Thomas, 1988). These calibration models were verified
with the verification set of 9 samples (Table 1). PCR and
PLS models gave the same results with % RPES of 2.8
and % recovery of 103 for maltol, % RPES of 6.6 and %
recovery of 106 for ethyl maltol, and % RPET of 5.1. The
PC–RBF–ANN model produced similar but slightly worse
figures of merit.

4.5. Selectivity

To study the selectivity of the proposed method, the
effect of various substances on the analysis of a mixture
of maltol (20.0 mg L�1) and ethyl maltol (20.0 mg L�1)
was tested under the optimum conditions. The tolerance
limit was defined as the concentration of added species
causing less than ±10% relative error. The results showed
that sucrose, glucose, critric acid, Na, K, and Ca ions did
not interfere at a 500:1 interferent-to-anlyte concentration
ratio; synthetic colorants, such as sunset yellow, tartrazine,
amaranth, ponceau 4R, brilliant blue and indigo carmine
produced interferences at about 200-fold concentration
tions, and HPLC-UV

Found (lg g�1)b % Recoveryc

Standard addition

tol Maltol Ethyl maltol Maltol Ethyl maltol

24.9 ± 0.1 9.9 ± 0.2 96 99
24.6 ± 0.1 4.9 ± 0.1 99 98
5.1 ± 0.1 24.4 ± 0.1 102 94
28.7 ± 0.2 10.0 ± 0.1 98 100

24.9 ± 0.1 9.8 ± 0.2 96 98
24.6 ± 0.1 4.9 ± 0.1 99 98
5.1 ± 0.1 24.4 ± 0.1 102 94
28.7 ± 0.1 9.9 ± 0.1 98 99

24.8 ± 0.2 10.4 ± 0.1 102 104
25.1 ± 0.1 5.3 ± 0.1 115 106
5.1 ± 0.2 24.4 ± 0.2 102 106
29.9 ± 0.1 10.5 ± 0.2 115 105

24.7 ± 0.1 10.2 ± 0.2 94 102
23.9 ± 0.2 5.2 ± 0.1 101 104
5.2 ± 0.02 24.3 ± 0.1 104 96
29.5 ± 0.1 9.6 ± 0.2 103 96

y – Anhui Jintianyuan Food Production Co. Ltd.; (3) Beverage – Shanxi
g Julep Production Co. Ltd.
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level relative to that of the flavour enhancers. Vanillin,
ethyl vanillin, Zn(II), Mn(II), Pb(II), Cu(II) and Fe(III)
produced only small effects even at a 100:1 interferent-to-
analyte ratio, but ascorbic acid interfered seriously with
the determination. Thus, it is important to extract the ana-
lytes from food samples with chloroform as suggested in
Section 3.5. This minimizes such interferences.

4.6. Maltol and ethyl maltol determination in food samples

The verified calibrations for the PCR, PLS and PC–
RBF–ANN methods were applied to the simultaneous
determination of maltol and ethyl maltol in several food
samples. There is a good agreement between the results
(Table 2) from the multivariate calibrations, and those pro-
duced by the HPLC-UV method. The % recoveries are uni-
formly consistent. This indicates that multivariate
prediction models can produce satisfactory results for the
simultaneous determination of maltol and ethyl maltol in
complex food samples.

5. Conclusion

A kinetic-spectrophotometric method has been
researched and developed for the simultaneous determina-
tion of the common food flavour enhancing compounds,
maltol, and its synthetic homologue, ethyl maltol. The sig-
nificance of this method is that it enables a simple quanti-
tative discrimination of the two compounds. This is
important since biological health and safety concerns have
been raised about ethyl maltol.

The suggested method utilizes the multivariate kinetic
approach because the UV–visible spectra of the two com-
pounds are almost the same. An indirect method, which fol-
lows the development of the pink colour of the ferroin
reagent in the reaction with the two analytes, facilitates the
discrimination of the compounds on a kinetic basis provided
chemometrics modeling is applied for data interpretation.

Verified PCR, PLS and PC–RBF–ANN calibration
models produced satisfactory results for the discrimination
and prediction of the two analytes in synthetic mixtures,
and in a range of food products. The results compare well
with the analysis of the same samples by the HPLC-UV
method.
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